M.Sc. Leo Semmelmann
- Group: KIT
- Room: 5C-05.2
- Phone: +49 (721) 608-48377
- leo semmelmann ∂ kit edu
Karlsruhe Institute of Technology (KIT)
Institute of Information Systems and Marketing (IISM)
Kaiserstraße 89
76133 Karlsruhe
Forschungsinteressen
- Dynamic tariff adoption
- Modelling heat pump operations in households
- Heat pump load forecasting and synthetic data generation
- Battery storage trading algorithms
Lebenslauf
02/2024 - 03/2024 | Visiting Researcher @ Purdue University |
04/2017 - Heute |
Geschäftsführer bei der Isar Digital Ventures GmbH (https://www.isar.ventures) |
10/2018 - 10/2021 | M.Sc. Management and Technology, Technische Universität München. Masterarbeit: Impact of Industrial Peak Shaving on the Distribution Grid: How Industrial Battery Storage Systems Can Help to Mitigate the Negative Impact of an Increasing Share of Electric Vehicles on the Distribution Grid |
11/2020 - 03/2021 |
Wissenschaftlicher Mitarbeiter am Lehrstuhl für Elektrische Energiespeichersysteme, Technische Universität München. |
11/2017 - 12/2019 |
Business Development & Data Science @ Exporo AG. |
09/2016 - 12/2016 | Auslandsaufenthalt Vancouver Island University |
10/2014 - 03/2018 | B.Sc., Wirtschaftswissenschaften, Johannes Gutenberg Universität Mainz. Bachelorarbeit: Anwendung des Random Forest Algorithmus auf die Vorhersage von Immobilienpreisen. |
An Algorithm for Modelling Rolling Intrinsic Battery Trading on the Continuous Intraday Market
Semmelmann, L.; Dresselhaus, J.; Miskiw, K. K.; Ludwig, J.; Weinhardt, C.
2024. Energy Informatics Review, 4 (4)
Semmelmann, L.; Dresselhaus, J.; Miskiw, K. K.; Ludwig, J.; Weinhardt, C.
2024. Energy Informatics Review, 4 (4)
Empirical field evaluation of self-consumption promoting regulation of household battery energy storage systems
Semmelmann, L.; Konermann, M.; Dietze, D.; Staudt, P.
2024. Energy Policy, 194, 114343. doi:10.1016/j.enpol.2024.114343
Semmelmann, L.; Konermann, M.; Dietze, D.; Staudt, P.
2024. Energy Policy, 194, 114343. doi:10.1016/j.enpol.2024.114343
The impact of heat pumps on day-ahead energy community load forecasting
Semmelmann, L.; Hertel, M.; Kircher, K. J.; Mikut, R.; Hagenmeyer, V.; Weinhardt, C.
2024. Applied Energy, 368, 123364. doi:10.1016/j.apenergy.2024.123364
Semmelmann, L.; Hertel, M.; Kircher, K. J.; Mikut, R.; Hagenmeyer, V.; Weinhardt, C.
2024. Applied Energy, 368, 123364. doi:10.1016/j.apenergy.2024.123364
Privacy‐preserving peak time forecasting with Learning to Rank XGBoost and extensive feature engineering
Semmelmann, L.; Resch, O.; Henni, S.; Weinhardt, C.
2024. IET Smart Grid, 7 (2), 172–185. doi:10.1049/stg2.12137
Semmelmann, L.; Resch, O.; Henni, S.; Weinhardt, C.
2024. IET Smart Grid, 7 (2), 172–185. doi:10.1049/stg2.12137
Generating synthetic load profiles of residential heat pumps: a k-means clustering approach
Semmelmann, L.; Jaquart, P.; Weinhardt, C.
2023. Energy Informatics, 6, Art.-Nr.: 37. doi:10.1186/s42162-023-00284-1
Semmelmann, L.; Jaquart, P.; Weinhardt, C.
2023. Energy Informatics, 6, Art.-Nr.: 37. doi:10.1186/s42162-023-00284-1
Load forecasting for energy communities: a novel LSTM-XGBoost hybrid model based on smart meter data
Semmelmann, L.; Henni, S.; Weinhardt, C.
2022. Energy Informatics, 5 (S1), Art.Nr. 24. doi:10.1186/s42162-022-00212-9
Semmelmann, L.; Henni, S.; Weinhardt, C.
2022. Energy Informatics, 5 (S1), Art.Nr. 24. doi:10.1186/s42162-022-00212-9