LeoS

M.Sc. Leo Semmelmann

  • Karlsruhe Institute of Technology (KIT)
    Institute of Information Systems and Marketing (IISM)
    Kaiserstraße 89
    76133 Karlsruhe

Forschungsinteressen

  • Dynamic tariff adoption

     

  • Modelling heat pump operations in households

     

  • Heat pump load forecasting and synthetic data generation

     

  • Battery storage trading algorithms

     

Lebenslauf

02/2024 - 03/2024 Visiting Researcher @ Purdue University
04/2017 - Heute

Geschäftsführer bei der Isar Digital Ventures GmbH (https://www.isar.ventures)

10/2018 - 10/2021 M.Sc. Management and Technology, Technische Universität München. Masterarbeit: Impact of Industrial Peak Shaving on the Distribution Grid: How Industrial Battery Storage Systems Can Help to Mitigate the Negative Impact of an Increasing Share of Electric Vehicles on the Distribution Grid
11/2020 - 03/2021

Wissenschaftlicher Mitarbeiter am Lehrstuhl für Elektrische Energiespeichersysteme, Technische Universität München.

11/2017 - 12/2019

Business Development & Data Science @ Exporo AG.

09/2016 - 12/2016 Auslandsaufenthalt Vancouver Island University
10/2014 - 03/2018 B.Sc., Wirtschaftswissenschaften, Johannes Gutenberg Universität Mainz. Bachelorarbeit: Anwendung des Random Forest Algorithmus auf die Vorhersage von Immobilienpreisen.

An Algorithm for Modelling Rolling Intrinsic Battery Trading on the Continuous Intraday Market
Semmelmann, L.; Dresselhaus, J.; Miskiw, K. K.; Ludwig, J.; Weinhardt, C.
2024. Energy Informatics Review, 4 (4)
The impact of heat pumps on day-ahead energy community load forecasting
Semmelmann, L.; Hertel, M.; Kircher, K. J.; Mikut, R.; Hagenmeyer, V.; Weinhardt, C.
2024. Applied Energy, 368, 123364. doi:10.1016/j.apenergy.2024.123364
Privacy‐preserving peak time forecasting with Learning to Rank XGBoost and extensive feature engineering
Semmelmann, L.; Resch, O.; Henni, S.; Weinhardt, C.
2024. IET Smart Grid, 7 (2), 172–185. doi:10.1049/stg2.12137
Generating synthetic load profiles of residential heat pumps: a k-means clustering approach
Semmelmann, L.; Jaquart, P.; Weinhardt, C.
2023. Energy Informatics, 6, Art.-Nr.: 37. doi:10.1186/s42162-023-00284-1
Load forecasting for energy communities: a novel LSTM-XGBoost hybrid model based on smart meter data
Semmelmann, L.; Henni, S.; Weinhardt, C.
2022. Energy Informatics, 5 (S1), Art.Nr. 24. doi:10.1186/s42162-022-00212-9